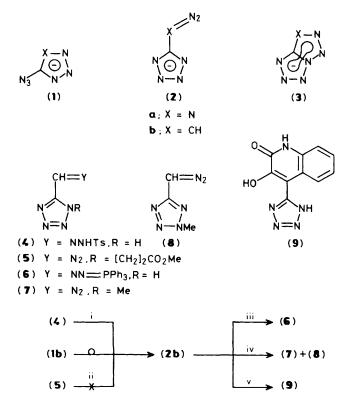
Rearrangement of 4(5)-Azido-v-triazolide to 5-(Diazomethyl)tetrazolide

Dietrich Moderhack* and Lutz Preu

Institut für Pharmazeutische Chemie der Technischen Universität, D-3300 Braunschweig, Germany

A literature finding with 4(5)-azido-v-triazolide is reinterpreted as showing the occurrence of the title reaction; this constitutes a new kind of v-triazole ring transformation.

Since Vilarrasa and his co-workers¹ have demonstrated that 5-azidotetrazolide (1a) is capable of undergoing degenerate rearrangements $[e.g. (1a) \rightleftharpoons (2a)]$, we felt that under comparable conditions the related 4(5)-azido-v-triazolide (1b) should (irreversibly) isomerise to 5-(diazomethyl)tetrazolide (2b). This led us to look more closely at a reported experiment with (1b) carried out by Elguero and his colleagues.²


These authors,² whose aim was to determine the position of a presumed (1b) \leq (3b) equilibrium, had observed that (1b), when generated in dimethyl sulphoxide (DMSO) solution from the corresponding v-triazole by adding an excess of NaH, did not equilibrate with (3b). Instead, they had noticed that the spectroscopic peaks pertaining to (1b) (an i.r. band at 2120 cm^{-1} and a ¹H n.m.r. singlet at δ 6.97) gradually disappeared, while (remarkably) new absorptions developed at 2090 cm⁻¹ and δ 5.63 (s).[†] To accommodate these data, the authors² thought of a degradation similar to that reported for 5-azido-1,4-diphenyl-v-triazole,3 followed by a further decomposition step giving NaCN, to which the new i.r. band was attributed. However, according to our aforementioned supposition, we regarded the questionable data as pointing to a -CH=N2 functionality [i.e. formation of (2b)]. This has now been established as follows.

(i) Brief heating of the tetrazole (4) with an excess of DBN (1,5-diazabicyclo[4.3.0]non-5-ene) in DMSO as solvent‡ produced, *inter alia*, the same spectroscopic absorptions as quoted for 'decomposed' (1b). Parallel behaviour was also found in the electronic spectra, the visible part of which showed a low intensity band at approximately 480 nm (ε ca. 20).⁷ On addition of triphenylphosphine to either reaction mixture the singlet at δ 5.58 diminished, whilst a doublet at δ 8.38 ($^{4}J_{HP}$ 2 Hz) appeared, indicating the formation of the phosphazine (6) (in tetrazolide form) (cf. ref. 6).

(ii) In the ¹³C n.m.r. spectrum of (**1b**) the initial resonances (a doublet at δ 118.9 and a singlet at δ 138.9) were gradually replaced by a doublet at δ 38.3 and a singlet at δ 150.5 [the high-field resonance at δ 38.3 is diagnostic for a diazo compound;⁷ cf. also ref. 6 for diazo carbon resonances of ring-substituted 5-(diazomethyl)tetrazoles].

(iii) Admixture of an excess of methyl iodide when (1b) was no longer detectable caused rapid disappearance of the singlet at δ 5.58 while giving rise to paired singlets (in 3:1 ratio, respectively) at (a) δ 3.87 and 6.42 and (b) δ 4.28 and 6.14 [singlets of pair (a) were slightly less intense than those of pair (b)]. As confirmed by comparison with authentic samples,⁶ these peaks are due to compounds (7) and (8). (iv) Addition of isatin (cf. ref. 6) to a solution as used for methylation, followed by acidification, afforded the quinolone (9) [m.p. 317 °C (decomp.) (from AcOH); satisfactory C,H,N analysis; ferric test, i.r. and ¹H n.m.r. as expected; m/z (70 eV; 200 °C) 229 (M^{++} , 55%), 173 (69), and 117 (100)]. The same material was obtained, albeit in low yield, by heating a mixture of (4), DBN, and isatin.

In comparison with the conversion of (1a), the rearrangement of (1b) turned out to be much faster [at 32 °C, $k_{obs} = 9.20 \times 10^{-5} \text{ s}^{-1}$, r = -0.998 (monitored up to >90% of conversion)]. Moreover, as the reaction has the advantage of giving fairly pure and reasonably stable solutions of (2b) [some (2b) was detectable even after one week], it seems especially suited for further studies of this particular diazo compound. As regards the mechanism, we believe that (1b) is transformed through (3b), for the reasons that suggested¹ the intermediacy of (3a) in the (1a) \rightleftharpoons (2a) interconversion.§ The alternative

Scheme 1. Reagents and conditions: i, DBN/heat; ii, DBN/room temp.; iii, PPh₃ (product in tetrazolide form only); iv, MeI; v, isatin (then H_2O and HCl); DMSO as solvent throughout.

[†] In repeating this experiment, we measured ν_{max} 2120 cm⁻¹, δ 6.93 and ν_{max} 2080 cm⁻¹, δ 5.58, respectively.

 $[\]ddagger$ Procedure. The tetrazole (4) [60 mg; m.p. 190–192 °C (decomp.); prepared from dimeric tetrazole-5-carbaldehyde⁴] in Me₂SO or (CD₃)₂SO (1 ml) was heated to 90–95 °C for 1 min, after 5–6 drops of DBN had been added [by this method a 50% conversion of (4) could be effected; NaH in place of DBN proved less efficient].

An attempt to generate (2b) by DBN-induced removal (cf. ref. 5) of the N-substituent from (5) [yellow oil; obtained by amine diazotisation (cf. ref. 6)] failed because the reagent preferentially attacked the $-CH=N_2$ group of the precursor.

[§] The existence of direct evidence for the presence of (3b) seems open to discussion. When the reaction $(1b) \rightarrow (2b)$ had reached at least 50% conversion, a very weak 'H n.m.r. singlet at δ 7.86 [intensity *ca.* 1/25th that of the singlet of (2b)] was observed. After completion of the reaction, two further small singlets became visible between δ 8 and 9. All these three minor peaks disappeared on addition of methyl iodide. In the ¹³C n.m.r. spectrum there was no extra signal.

pathway via a discrete α -diazo imine (in its anionic form) is considered less likely, since this species should be much higher in energy than (**3b**) (cf. ref. 1). The reaction (**1b**) \rightarrow (**2b**) thus differs in type from the recently described⁸ rearrangement of 1-aryl-5-azido-4-methoxycarbonyl-v-triazoles where α -diazo imines are obvious intermediates.

Since the new v-triazole ring transformation described here is expected to apply to derivatives (1) having (for X) a variety of CR groups, work is in hand to reveal the scope of the reaction.

Received, 26th April 1988; Com. 8/01643G

References

- 1 J. A. C. Gorini, J. Farràs, M. Feliz, S. Olivella, A. Solé, and J. Vilarrasa, J. Chem. Soc., Chem. Commun., 1986, 959.
- 2 R. M. Claramunt, J. Elguero, A. Fruchier, and M. J. Nye, Afinidad, 1977, 34, 545.
- 3 P. A. S. Smith, L. O. Krbechek, and W. Resemann, J. Am. Chem. Soc., 1964, 86, 2025.
- 4 D. Moderhack, Chem.-Ztg., 1977, 101, 403.
- 5 H. Faubl, Tetrahedron Lett., 1979, 491.
- 6 D. Moderhack and K.-H. Goos, Chem. Ber., 1987, 120, 921.
- 7 Cf. M. Regitz and G. Maas, 'Diazo Compounds—Properties and Synthesis,' Academic Press, New York etc., 1986.
- 8 G. L'abbé, P. Van Stappen, and S. Toppet, *Tetrahedron*, 1985, **41**, 4621, and references therein.